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Abstract. Learning from pseudo-labels that generated with VLMs (Vi-
sion Language Models) has been shown as a promising solution to assist
open vocabulary detection (OVD) in recent studies. However, due to the
domain gap between VLM and vision-detection tasks, pseudo-labels pro-
duced by the VLMs are prone to be noisy, while the training design of the
detector further amplifies the bias. In this work, we investigate the root
cause of VLMs’ biased prediction under the OVD context. Our observa-
tions lead to a simple yet effective paradigm, coded MarvelOVD, that
generates significantly better training targets and optimizes the learning
procedure in an online manner by marrying the capability of the detector
with the vision-language model. Our key insight is that the detector itself
can act as a strong auxiliary guidance to accommodate VLM’s inability
of understanding both the “background” and the context of a proposal
within the image. Based on it, we greatly purify the noisy pseudo-labels
via Online Mining and propose Adaptive Reweighting to effectively sup-
press the biased training boxes that are not well aligned with the tar-
get object. In addition, we also identify a neglected “base-novel-conflict”
problem and introduce stratified label assignments to prevent it. Ex-
tensive experiments on COCO and LVIS datasets demonstrate that our
method outperforms the other state-of-the-arts by significant margins.
Codes are available at https://github.com/wkfdb/MarvelOVD.
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Fig. 1: Improvements achieved by incorporating the detector for pseudo-label gen-
eration and the following learning phase. (a) The distribution of pseudo-labels gen-
erated by CLIP and our method. “Mis-class” means boxes labeled as wrong cate-
gories and “noise” indicates boxes that should not be considered as pseudo-labels.
The VLM (CLIP) has low “mis-class” rate but fails to distinguish noisy boxes. Our
method discriminates the noises by combining the characteristics of the detector, and
hence significantly improves the quality of the pseudo labels. (b) The red box indi-
cates pseudo-label and the blue boxes represent the matched training boxes. Adaptive
proposal reweighting computes independent weights according to the prediction of de-
tector and the confidence from pseudo-label, leading the training to focus on more
reliable instances (e.g. the lower right training box).

1 Introduction

Open-vocabulary object detection (OVD) [35] is receiving increasing attention
due to its capability of detecting novel objects at test time. In a typical OVD
setting, only a fraction of the target categories is annotated (referred as the
base categories) while the goal of OVD is to recognize a set of novel classes
at inference time. The objects of novel categories can appear in the training
images but do not receive any annotations. To enhance the generalizability of the
OVD detector, recent works have proposed to incorporate the vision-language
models (VLMs) [13, 24, 36], which have been verified with excellent zero-shot
recognization capacity, to improve the existing OVD pipeline.

A common practice for the OVD task with known novel concepts is to gen-
erate pseudo-labels using the VLMs (e.g. CLIP [24]) in an offline manner [38].
However, because of the domain shift between the contrastive language-image
pretraining and object detection tasks, VLMs trained with image-level data in-
evitably introduce noisy annotations when applied to the cropped partial images.
We demonstrate an in-depth analysis of the pseudo-labels generated by the CLIP
model in Figure 1(a). We denote the valid novel object proposal mistakenly clas-
sified as other categories as “Mis-class” and boxes that should not be considered
to contain a novel object as “Noise”. In fact, the mis-classification rate of the
VLM-based method is rather low (only 3.3%). The main source of error stems
from its incapability of distinguishing “noisy” boxes (error rate 76.6%), e.g., the
dog leg in Figure 1(a), that should not be considered as a valid object of interest.

The key reasons for the difficulty of the VLMs to recognize noisy proposals
are two-fold. 1) The lack of contextual information to understand the locally
cropped images. Instead of trained with image patches, the CLIP model is fed
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with complete images with paired texts. Therefore, it is not able to leverage the
image context outside the input proposal, which may be crucial to interpret the
semantics of the candidate box. For instance, in Figure 1(a), the man’s arm is
falsely classified by the CLIP model as “tie”, as it fails to recognize that the
seemingly “tie” object is in fact connected to a human body. 2) The unawareness
of the “background” elements. The CLIP model generates the category predic-
tion by computing the similarity between the query image feature and the text
embedding of the candidate categories. Since “background” is relatively defined
according to interested foreground categories, there is no pre-defined text em-
bedding to represent the concept of “background” during the inference. However,
the CLIP model still has to provide a prediction even when the input content
is not related to any of the target categories. In Figure 1(a), the dog leg falls in
this case – it is identified as “cow” only because it appears more like cow than
any other category, leading to noisy boxes.

Unlike the CLIP model, the RoI align technique in detectors naturally pro-
vides rich contextual information for local regions. Moreover, the detector is
aware of the concept of “background” during inference. As a result, the noisy
boxes that confuse VLMs can be clarified by the detector as “background” with
high confidence. Inspired by this key observation, we propose MarvelOVD, a
dedicated framework for open-vocabulary detection that can yield high-quality
pseudo-labels and marvelous performance by combining the merits of the object
detector and the vision-language models. In particular, we leverage the “con-
text and background” awareness of the detector as strong auxiliary guidance to
comprehensively improve the pseudo-label generation pipeline and the training
procedure.

For pseudo-label generation, the predicted category confidence is based on a
weighted sum of the outputs from the detector and the VLM, favoring the reliable
classification of the VLM models while ruling out noisy boxes using the detector.
To accelerate the training, we pre-generate the VLM predictions on all the can-
didate boxes and dynamically mine credible pseudo-labels under the guidance
of the detector at each training iteration. The complementary capabilities of the
detector and the VLM significantly improve the accuracy of pseudo-labels, even
at the early training stage. Moreover, as the detector improves during training,
the quality of the generated pseudo-labels increases as well, which eventually
boosts the final performance as shown in Figure 1(a).

Conventional training design of object detectors [10] equally treats each pro-
posal that matches with one training target. Such a design is not suitable for
learning from pseudo-labels. Specifically, the generated pseudo-box may deviate
a lot from the bounding box of the real novel object. Therefore, as shown in
Figure 1(b), the overlaps between the training boxes and the actual novel object
usually present a large variance. This means that these training boxes should
not make equal contributions to the final loss, even if they match the same
pseudo-label. To this end, instead of weighting the pseudo-labels [38], we adap-
tively compute individual weights for each training box that is matched with a
pseudo-label. As shown in Figure 1(b), training boxes with inaccurate positions
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will receive smaller weights and vice versa. Note that the training boxes are pro-
duced with a stratified label assignment strategy, which eliminates the conflicts
between the pseudo-labels and base annotations and thus prevents the negative
influence of noisy pseudo-label on the performance of base category detection.

2 Related Work

Vision-Language Pre-training Vision-Language pre-training, aiming to align vi-
sual and textual representations, employs contrastive learning on large-scale
image-caption pairs [6, 12, 14]. Significant research has enhanced various down-
stream tasks using Vision-Language models [15, 16, 23]. Notably, models like
CLIP [24] and ALIGN [13] have leveraged billion-scale image-text pairs for
vision-language representation learning, achieving remarkable success in zero-
shot image classification and image-text retrieval. This success has inspired the
application of Vision-Language Models (VLMs) in enhancing the range and ac-
curacy of dense recognition tasks, such as object detection [8, 26, 28, 30] and
semantic segmentation [25, 33, 40]. Nonetheless, VLMs, typically pre-trained by
considering the entire image, face domain gaps in dense prediction tasks. Our
research investigates the application of VLMs for object detection in localized
regions, aiming to broaden the detector’s cognitive scope without relying on
manual annotations.

Open Vocabulary Object Detection Open Vocabulary Object Detection (OVD)
aims to extend the detector’s recognition capability to classes not present in
the training data using auxiliary data or models. The concept was initially in-
troduced by OVR-CNN [35], which empowered the detector to recognize diverse
object concepts by leveraging vision and text encoders pre-trained on image-text
pairs. Subsequently, several OVD methods have been developed. Recent research
in OVD has explored various forms of auxiliary data, including transfer learning
with image-text pairs [2, 3, 19], knowledge distillation from pre-trained Vision-
Language Models [1,4,8,28,29], pseudo-label generation from image classification
data [1,41], and pretraining with grounding data [18,37]. Except for CNN-based
detectors, transformer-based open vocabulary detectors [17,30,34] have also been
widely exploited. In addition to the standard OVD scenario, which assumes that
novel categories are unknown during training, some existing works [5, 38] have
also explored open vocabulary detection with prior knowledge about potential
novel concepts. Typically, in such cases, pseudo-labels for novel categories are
generated using Vision-Language Models (VLMs) before training. However, the
domain gaps between vision-language pre-training and object detection intro-
duce noisy pseudo-labels, significantly constraining the performance of existing
methods. To address this challenge, we identify a critical limitation in applying
VLMs to localized regions and propose a solution that involves integrating the
detector’s capabilities to effectively mitigate this noise, leading to substantially
improved performance.
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3 Preliminaries

Open-vocabulary object detection aims to train detection models by leveraging
a dataset D = {xi, yi}ni=1 and auxiliary weakly supervised data (e.g. image-text
pairs, VLMs, etc.), where xi represents the image and yi includes the location
and category of the objects contained in the image. Different from conventional
detection tasks, the annotation of images only covers the base categories CB ,
while the OVD task requires the detector to additionally detect novel categories
CN at the test time. Note that CB ∩ CN = ∅, and the label space CN is already
known during the training.

To achieve the detection in an open-vocabulary label space, the classifica-
tion head in the detector is designed to compare the similarity between the
region-based visual embeddings and the text embeddings [35]. In particular, the
region-embeddings R = {ri}Nr

i=1 are obtained through RoI Align and the follow-
ing feature extractor, where Nr is the number of regional boxes in the images.
The text embeddings are composed of C = {cbg} ∪ {ci}Nc

i=1, where ci is ob-
tained by feeding the category name with template prompts (e.g., “a photo of
{category name} in the scene”) to the pre-trained text encoder and Nc is
number of categories. The cbg is initialized as a learnable embedding. Based on
the regional and text embeddings, the probability of the region ri being classified
as category cj is defined as

pi,j =
exp(ri · cj)

exp(ri · cbg) +
∑Nc

k=1 exp(ri · ck)
. (1)

Comparing the similarity between the region and text embedding enables the
detector to recognize objects in an unlimited label space.

4 MarvelOVD

To facilitate the learning of semantics associated with open categories with-
out manual annotation, existing approaches often employ pre-trained Vision-
Language Models (VLMs) to discover potential novel objects [5, 7, 38, 41] and
generate pseudo-labels for subsequent training. The typical procedure involves
training a proposal generator using base annotations to identify localized re-
gions that may contain novel objects, followed by the generation of pseudo-
labels based on VLM inference results within these cropped regions. However,
as VLMs are pre-trained on entire images, their application to localized regions
inevitably introduces noisy pseudo-labels, leading to disruptions in the learn-
ing process for novel categories. To enhance the learning of novel concepts,
we present MarvelOVD, which dynamically integrates the detector’s capabili-
ties into the pseudo-label generation process while optimizing the subsequent
learning stages. Figure 2 provides an overview of our framework, with detailed
explanations in the following sections.
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Fig. 2: The framework of our method, which improves the quality of pseudo-labels
while optimizing the following learning process by dynamically incorporating the de-
tector during the training. We first assign candidate boxes to the images with CLIP
and a proposal generator. Then we select noisy pseudo-labels according to the CLIP
scores to burn-in the detector. After burn-in, the detector initially obtains the capac-
ity to recognize novel concepts. Based on it, we dynamically estimate the novelty of
each candidate box and combine the corresponding CLIP prediction to select precise
pseudo-labels. We adopt stratified label assignment to generate training boxes, while
the loss weights for the novel training boxes are independently computed based on the
detector’s prediction.

4.1 Candidate Pseudo-Label Assignment

Our proposed MarvelOVD dynamically generates better pseudo-labels at each
training iteration under the guidance of both the detector and pre-trained VLMs.
Since predicting the cropped regions with VLMs during training requires unaf-
fordable time overhead, we alternatively assign candidate pseudo-labels to each
image before the training and then select precise ones to train the detector at
each iteration.

Following the existing method [38], we first train a class-agnostic proposal
generator with the base annotation to produce regional boxes for each image.
Image patches are then cropped according to the regions and fed into the CLIP
image-encoder to obtain the regional-visual-embeddings. At the same time, we
utilize the corresponding CLIP text-encoder and template text prompts to en-
code each novel category. After that, a similarity matrix is computed via dot
product to describe the similarity between each visual-embedding and text-
embedding. Finally, softmax is applied to obtain the distribution over novel cate-
gories for each region. Based on it, the conventional method [7,38] post-processes
the boxes and selects high-confidence pseudo-labels to train the detector. The
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problem is that the domain gap easily leads CLIP to produce high confidence
predictions on noisy regions, which greatly limits the performance of the exist-
ing methods. In contrast, we record the CLIP predictions and assign candidate
boxes to the image using a low threshold (e.g. 0.5), and then dynamically select
precise pseudo-labels from the candidates under the guidance of the detector,
which is introduced in detail in the following section.

4.2 Online Pseudo-label Mining

The candidate pseudo-labels can be categorized into two groups: ground-truth
boxes (those tightly enclosing actual novel objects) and noisy boxes (those that
should not be designated as novel objects). The primary objective is to eliminate
noisy candidates while retaining ground-truth boxes as reliable pseudo-labels for
training. The key distinction between the detector and CLIP in their inference
of localized regions lies in the contextual information and the “background” con-
cept. The RoI Align mechanism employed by the detector excels at extracting
contextual features from the boxes, a capability that is absent when cropping
images based on coordinates alone. Additionally, the detection task incorporates
a specific task-specific category known as “background”, a concept that CLIP
remains unaware of when inferring localized regions. Failing to recognize the
“background” objects and the lack of contextual features are the root causes of
CLIP model generating wrong predictions for noisy boxes. Though the CLIP
model struggles with the noisy boxes, its predictions for the ground-truth boxes
are highly accurate. Leveraging this insight, we propose to utilize the detec-
tor’s predictions for these candidates to estimate whether a box encloses real
novel objects. Subsequently, we combine CLIP’s classification results to select
high-quality pseudo-labels.

Burn-in. To estimate the novelty of the candidate boxes, the detector first needs
to learn “what is novel”. To achieve this, we first utilize the top-1 CLIP score (top
score of the distribution predicted with CLIP’s image-encoder and text-encoder)
and a fixed threshold 0.8 (best threshold in previous work [38]) to initially select
pseudo-labels to burn-in the detector for ω steps. After the burn-in phase, the
model will initially gain the ability to distinguish between base objects, novel
objects, and the background.

Online Object Mining. Online object mining officially begins after the burn-in
phase. We draw ideas from semi-supervised learning [27] to derive weak-strong
image pairs for the training, which enhances the learning for pseudo-labels. In
particular, we first predict the candidate boxes with the detector on weakly
augmented features. Based on it, we compute a novelty score for each candidate
as follows:

zi =

∑
k∈CN exp(ri · ck)∑

j∈CB∪CN∪{cbg} exp(ri · cj)
(2)

where r is the vision-embedding calculated by the detector and c is the text-
embedding of categories. CB and CN are the sets of base and novel categories,
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respectively. The novelty score zi relatively estimates the novelty of candidate
boxes with respect to the base category and background. However, its value
varies drastically with different degrees of convergence. To tackle this problem,
we further apply max-norm to the novelty scores of candidates to obtain stable
estimations:

sdeti =
zi

max{z1, z2, · · · , zNr
}

(3)

where Nr represents the number of the candidates. Benefiting from the contex-
tual reasoning capacity of the detector and the awareness of background, the
novelty estimation sdet computed by the detector can more precisely distinguish
the ground-truth/noise candidates. Combined with the accurate classification
prediction generated by the CLIP model, we finally calculate the confidence
score for each candidate box as follows:

si = λsCLIP
i + (1− λ)sdeti (4)

In the above equation, sCLIP
i means the top-1 CLIP score and λ ∈ [0, 1] is a

scalar that controls the dependency of two different models. We utilize a fixed
threshold δ to select high-quality pseudo-labels. The training is then derived on
both weakly and strongly augmented images.

The incorporation of the detector significantly reduces the confidence of the
noisy candidates, which greatly improves the accuracy of the selected pseudo-
labels, even at the initial training phase. Moreover, as the model converges with
the training, the novelty estimation sdet would be more accurate, which results
in pseudo-labels of higher quality and ultimately boosts the model’s detection
performance on novel categories.

4.3 Training

In this section we describe our improvements to the conventional training design
of the detector [10]. All the proposed methods in this section are applied both
in the burn-in stage and the following online-object-mining stage.

Stratified Label Assignment. The learning of novel concepts should not affect the
model’s performance in recognizing base objects. However, an easily overlooked
phenomenon is that the mAP for base categories drops when novel pseudo-labels
are applied for the training. The reason is that the novel pseudo-labels may over-
lap with the base annotation, resulting in “base-novel-conflicts” in the IoU-based
label assignment. To tackle this problem we propose stratified label assignment,
which first assigns proposals with base annotations by IoU-matching, and boxes
that are marked as background in the first step are secondly matched with the
pseudo-labels. Experiments demonstrate that stratified label assignment helps
achieve high accuracy of detecting novel objects without compromising the per-
formance on estimating base categories.
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Adaptive Proposal Reweighting. Since the localization quality of the pseudo-label
is limited, the box center may be far away from the ground-truth object cen-
ter. As a result, training boxes that matched with the mislocalized pseudo-label
share extremely unbalanced overlaps with the ground-truth object. However, the
conventional training design of detectors [10] equally derives training losses on
those unbalanced boxes, which hampers the learning process. To resolve this is-
sue, we propose adaptive proposal reweighting to assign independent loss weights
to each training box that matches with pseudo-label.

The loss function to train the detector with adaptive proposal reweighting is
computed as:

L =
1

N
(

nbase∑
i=1

l(bbasei ,Gbase) + γ

nnovel∑
i=1

wi · l(bnoveli ,Gnovel)) (5)

where N = nbase+nnovel (nbase includes background box) is the total number of
training boxes, γ is the overall weight for novel concept learning and wi represents
the independent weights for each novel training box. In particular, we follow the
design of Eq. 4 to define the individual weight wi as:

wi = λ′si + (1− λ′)ri (6)

In Eq. 6, si indicates the confidence of the corresponding pseudo-label and ri
is a reliability score estimated for each matched training box. Estimating the re-
liability score ri is crucial and challenging. We empirically find that background
score predicted on the weakly augmented images keeps close negative correla-
tion to the overlaps with actual object and define ri = 1 − bi, where bi is the
background score predicted according Eq 1. We also examine other indicators
for comparison, more details are shown in supplementary materials. With adap-
tive reweighting, training boxes with higher overlap to real novel objects will be
given greater weights and vice versa, thus de-biasing the learning procedure for
novel concepts and further improving the performance.

5 Experiments

In this section, we evaluate our MarvelOVD framework against standard bench-
marks, comparing it with current state-of-the-art approaches. Additionally, our
ablation studies provide in-depth analyses of the primary issues leading to noises
in traditional CLIP-based pseudo-label generation and detail how our framework
effectively addresses these challenges.

5.1 Datasets

Our primary experiments utilize the COCO-2017 dataset [21] in an open vo-
cabulary setting [35], dividing 48 base and 17 novel categories for evaluation.
Annotations for base categories are provided, while only category names are
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available for novel classes. We calculate APNovel
50 , APBase

50 , APAll
50 , representing

the mean Average Precision at an IoU of 0.5 for novel, base, and all categories,
respectively. Additionally, the LVIS-v1 dataset [9] is employed in standard Open
Vocabulary Detection (OVD) settings [8], treating 337 rare categories as novel
and the rest as base. For LVIS, we report box Average Precision (AP) averaged
over IoUs from 0.5 to 0.95 for rare (novel), common, frequent, and all categories,
denoted as APr, APc, APf , and AP .

5.2 Implementation Details

We utilize ViT-B/32 CLIP as the pre-trained Vision-Language Model (VLM)
and its text-encoder for encoding category concepts. Consistent with existing
approaches [38], our experiments on the COCO dataset employ Mask-RCNN [10]
with ResNet50-FPN [11,20] as the base detector. For training, we initially select
noise pseudo labels with CLIP scores above 0.8 and use this setup for the burn-in
phase for ω = 0.5k iterations. Subsequently, we set λ, λ′ = 0.5 to integrate the
detector with CLIP and δ = 0.9 for generating precise pseudo-labels. We set
γ = 2 as the overall weights for novel concept learning. Training is conducted on
4 GPUs, with a total batch size of 16 across 90k iterations (including 0.5k for
burn-in), using a starting learning rate of 0.02, reduced by a factor of 10 at 60k
and 80k iterations. The image input size adheres to the standard configuration,
with the short side ranging from [640, 800] and the long side under 1333. Ad-
ditionally, we apply common weak-strong augmentations from semi-supervised
object detection iterature [22,32] in pseudo-label learning. For the LVIS dataset,
we replicate Detic’s experimental setup [41] and apply our method to the Cen-
terNet2 [42] baseline. The model is trained on 4 GPUs, while maintaining the
total batch size unchanged. All experiments are conducted in Detectron2 [31],
with further details provided in the supplementary materials.

5.3 Main Results

Our approach integrates the detector to refine pseudo-label generation and the
subsequent learning phase, significantly reducing noises in pseudo-labels and
training boxes. As shown in Table 1, our method outperforms the baseline
method [38] substantially in inferring both base and novel categories. The im-
provement in base categories stems from stratified label assignment, ensuring
undisturbed learning of base categories despite pseudo-labels. The detector’s
integration effectively mitigates CLIP’s inability in distinguishing noise in local-
ized regions, enhancing pseudo-label quality and, in turn, the detector’s ability
to identify novel objects. Our method is also compared with other state-of-the-
art open-vocabulary detection techniques utilizing pseudo-labeling in Table 1.
While existing methods often rely on auxiliary data or supervision, like internet-
sourced image-text pairs [5,7], pseudo-region-text pair pre-training [39], or aux-
iliary image-level labels [1], our approach addresses and resolves fundamental
issues in pseudo-label generation and conventional training designs [10], achiev-
ing significant gains without extra data or supervision. Results on the LVIS
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Table 1: Comparison with state-of-the-art methods on COCO2017 dataset.

Methods Training Source APNovel
50 APBase

50 APAll
50

RegionCLIP [39]
box-level labels in CB ,

internet sourced image-text pairs,
pretraining with pseudo box-level labels

31.4 57.1 50.4

Gao et al. [7]
box-level labels in CB ,

internet sourced image-text pairs,
pseudo-box labels in CN generated by ALBEF

30.8 46.1 42.1

PromptDet [5]
box-level labels in CB ,

internet sourced image-text pairs,
pseudo-box labels in CN generated by CLIP

26.6 - 50.6

OADP [28]
box-level labels in CB ,

knowledge distillation from CLIP,
pseudo-box labels in CN generated by CLIP

35.6 55.8 50.5

Rasheed et al. [1]
box-level labels in CB ,

internet sourced image-text pairs,
image-level labels for CB ∪ CN , pseudo-box labels in CN

36.6 54.0 49.4

VL-PLM [38]
MarvelOVD(Ours)

box-level labels in CB ,
box-level pseudo-labels in CN generated with CLIP

32.3
38.9

54.0
56.4

48.3
51.8

Table 2: Comparison with state-of-the-art methods on LVIS-v1 dataset. All the meth-
ods are derived under the same base detector and experimental settings.

Methods APr APc APf AP

VLDet [19] 22.4 - - 34.4
Detic [41] 24.6 32.5 35.6 32.4

Rasheed et al. [1] 25.2 33.4 35.8 32.9
MarvelOVD(Ours) 26.0 34.2 36.9 34.2

dataset (Table 2) compares our method against the common CenterNet2 base-
line [41]. Contrary to existing methods [1, 41] that use additional classification
data with image-level labels for enhanced novel object detection, our method ex-
ploits potential novel objects from original training data. The results in Table 2
indicate that our method also excels in large-scale label spaces.

6 Ablation Study

We conduct experiments on the COCO dataset to assess the effectiveness of our
method’s key components, with additional ablations detailed in supplementary
materials.

6.1 Effects of Each Component

Table 3 demonstrates the contribution of each proposed algorithmic component
to the final performance. Initially, we change the global training setting of VL-
PLM [38], including overall novel loss weight γ and the data augmentations.
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Table 3: Roadmap from existing method to our framework.

APNovel
50 APBase

50 APAll
50

Supervised by base annotations - 56.4 -
VL-PLM [38] 32.7 54.0 48.5
VL-PLM(set γ = 2) [38] 32.5 54.0 48.4
+Weak-Strong augmentation 34.2 53.9 49.1
+Stratified Label Assignment 34.4 56.4↑ 50.5
+Online object Mining 37.8↑ 56.5 51.3
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Fig. 3: Visualization of the quality of our dynamically generated pseudo-labels, with
red dashed lines indicating the quality of the original CLIP-based pseudo-labels.

A larger novel loss weight doesn’t affect the performance while Weak-Strong
augmentations enhance the learning of pseudo-labels. We then implement strat-
ified label assignment to resolve conflicts between novel pseudo-labels and base
annotations. This adjustment restores base category detection to supervised per-
formance levels without impacting novel category detection. After that, we intro-
duce online object mining to purify the pseudo labels, which brings a significant
improvement in detection accuracy on the novel categories, indicating the effec-
tiveness of our method in offsetting CLIP’s localized limitations by leveraging
the detector’s capabilities. Based on it, applying adaptive proposal reweighting
further enhances the average precision for novel categories. The promotion comes
from the independent weights computed by adaptive reweighting, which enforces
the model to focus on boxes with larger overlaps with actual novel objects. In
summary, our method offers a less biased pipeline for pseudo-label-based novel
concept learning, which not only effectively purifies the training targets but also
optimizes the learning procedure, and significantly enhances performance in both
base and novel categories without requiring extra data or pretraining.

6.2 Analysis of Pseudo Labels

We conduct an in-depth analysis of pseudo-labeling quality across different train-
ing stages using the COCO evaluation set, which comprises 2064 images featuring
novel objects. Pseudo-labels with an IoU score above 0.5 relative to the ground
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Table 4: Effects of different thresholds and burn-in steps. The default setting is ω =
0.5k for burn-in and threshold δ = 0.9 for online pseudo-label mining.

δ 0.8 0.85 0.9 0.95 ω 0.5k 1k 2k 5k

APNovel
50 37.0 38.2 38.9 38.4 APNovel

50 38.9 38.7 38.7 38.5

24.2
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Fig. 4: Effects of different dependence controler λ and λ′.

truth (GT) novel object and correctly categorized are classified as True Posi-
tives (TPs). The findings are depicted in Figure 3. For equitable comparison, we
align the threshold of CLIP-based pseudo-labels (δ = 0.95) with our dynamic
pseudo-labels (δ = 0.8) to maintain comparable recall rates. Initially, the burn-in
stage imparts novel object discrimination ability, leading to a stable improve-
ment in pseudo-label quality right after this phase. Subsequently, the enhanced
pseudo-labels refine the detector’s ability to recognize novel objects, manifesting
as a large increase in pseudo-label precision in the early stages of training. As
illustrated in Figure 3, as training progresses, the detector increasingly differ-
entiates novel boxes from background and base objects, dynamically enhancing
pseudo-label quality.

6.3 Effects of different thresholds and burn-in steps

We evaluate the performance impact of various thresholds and burn-in steps, de-
tailed in Table 4. Our base setting uses a threshold δ = 0.9 and ω = 0.5k burn-in
steps. Notably, the threshold for pseudo-label selection markedly affects model
performance; while 0.8 is optimal for our baseline, a threshold of about 0.9 proves
more effective for our method due to less biased pseudo-labeling confidence. Re-
garding burn-in steps, which guide initial learning from CLIP-generated pseudo-
labels, their effect on final performance is minimal. As the model converges, the
quality of these pseudo-labels improves, indicating that different initial settings
eventually yield similar performance outcomes.

6.4 Dependency analysis of λ and λ′

We calculate the confidence of each candidate pseudo-label using Eq. 4 and
the training weights for each novel box via Eq. 6, where λ and λ′ determines
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the reliance on different models or measurements. The effects of varying λ and
λ′ are documented in Figure 4. Optimal performance is observed both at 0.5,
and a range of [0.3, 0.7] yields comparable outcomes. Specifically, extreme val-
ues were also tested: λ = 0 implies reliance solely on the detector post burn-in,
which results in poor performance, underscoring the importance of CLIP’s role
in distinguishing novel categories. Conversely, at λ = 1, pseudo-label generation
reverts to conventional methods [5, 7, 38] that rely entirely on the CLIP model.
While performance decreases in this setting, it still surpasses the baseline, sug-
gesting that adaptive proposal reweighting effectively counters the impact of
noisy boxes. By setting λ′ = 1, adaptive reweighting changes to the original
training design [10] with weighted pseudo-labels [38], and it limits the model’s
learning of novel concepts, resulting in significant performance degradation.

7 Conclusion

In this paper, we address the limitations of pre-trained Vision-Language Models
(VLMs) in generating accurate pseudo-labels for localized regions by integrating
object detectors’ capabilities. The key issue with VLMs is their lack of con-
textual awareness and inability to differentiate “background”, leading to biased
pseudo-labels. By leveraging the detector’s contextual feature extraction and
background discrimination abilities, we significantly improve pseudo-label qual-
ity through online object mining and optimize the learning process with adaptive
proposal reweighting. Our extensive experiments show that this approach not
only enhances the detector’s novel object recognition but also outperforms state-
of-the-art methods without additional data or supervision, offering an efficient
and effective solution for learning open vocabulary concepts by pseudo-labels.
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